# By design, pylint: disable=C0302 from __future__ import annotations import asyncio import threading from typing import Any, Callable, Generator, Optional, TypeVar, Union, cast, overload from reactivex import abc from reactivex.disposable import Disposable from reactivex.scheduler import CurrentThreadScheduler from reactivex.scheduler.eventloop import AsyncIOScheduler from ..observer import AutoDetachObserver _A = TypeVar("_A") _B = TypeVar("_B") _C = TypeVar("_C") _D = TypeVar("_D") _E = TypeVar("_E") _F = TypeVar("_F") _G = TypeVar("_G") _T_out = TypeVar("_T_out", covariant=True) class Observable(abc.ObservableBase[_T_out]): """Observable base class. Represents a push-style collection, which you can :func:`pipe ` into :mod:`operators `.""" def __init__(self, subscribe: Optional[abc.Subscription[_T_out]] = None) -> None: """Creates an observable sequence object from the specified subscription function. Args: subscribe: [Optional] Subscription function """ super().__init__() self.lock = threading.RLock() self._subscribe = subscribe def _subscribe_core( self, observer: abc.ObserverBase[_T_out], scheduler: Optional[abc.SchedulerBase] = None, ) -> abc.DisposableBase: return self._subscribe(observer, scheduler) if self._subscribe else Disposable() def subscribe( self, on_next: Optional[ Union[abc.ObserverBase[_T_out], abc.OnNext[_T_out], None] ] = None, on_error: Optional[abc.OnError] = None, on_completed: Optional[abc.OnCompleted] = None, *, scheduler: Optional[abc.SchedulerBase] = None, ) -> abc.DisposableBase: """Subscribe an observer to the observable sequence. You may subscribe using an observer or callbacks, not both; if the first argument is an instance of :class:`Observer <..abc.ObserverBase>` or if it has a (callable) attribute named :code:`on_next`, then any callback arguments will be ignored. Examples: >>> source.subscribe() >>> source.subscribe(observer) >>> source.subscribe(observer, scheduler=scheduler) >>> source.subscribe(on_next) >>> source.subscribe(on_next, on_error) >>> source.subscribe(on_next, on_error, on_completed) >>> source.subscribe(on_next, on_error, on_completed, scheduler=scheduler) Args: observer: [Optional] The object that is to receive notifications. on_error: [Optional] Action to invoke upon exceptional termination of the observable sequence. on_completed: [Optional] Action to invoke upon graceful termination of the observable sequence. on_next: [Optional] Action to invoke for each element in the observable sequence. scheduler: [Optional] The default scheduler to use for this subscription. Returns: Disposable object representing an observer's subscription to the observable sequence. """ if ( isinstance(on_next, abc.ObserverBase) or hasattr(on_next, "on_next") and callable(getattr(on_next, "on_next")) ): obv = cast(abc.ObserverBase[_T_out], on_next) on_next = obv.on_next on_error = obv.on_error on_completed = obv.on_completed auto_detach_observer: AutoDetachObserver[_T_out] = AutoDetachObserver( on_next, on_error, on_completed ) def fix_subscriber( subscriber: Union[abc.DisposableBase, Callable[[], None]] ) -> abc.DisposableBase: """Fixes subscriber to make sure it returns a Disposable instead of None or a dispose function""" if isinstance(subscriber, abc.DisposableBase) or hasattr( subscriber, "dispose" ): # Note: cast can be avoided using Protocols (Python 3.9) return cast(abc.DisposableBase, subscriber) return Disposable(subscriber) def set_disposable( _: Optional[abc.SchedulerBase] = None, __: Any = None ) -> None: try: subscriber = self._subscribe_core(auto_detach_observer, scheduler) except Exception as ex: # By design. pylint: disable=W0703 if not auto_detach_observer.fail(ex): raise else: auto_detach_observer.subscription = fix_subscriber(subscriber) # Subscribe needs to set up the trampoline before for subscribing. # Actually, the first call to Subscribe creates the trampoline so # that it may assign its disposable before any observer executes # OnNext over the CurrentThreadScheduler. This enables single- # threaded cancellation # https://social.msdn.microsoft.com/Forums/en-US/eb82f593-9684-4e27- # 97b9-8b8886da5c33/whats-the-rationale-behind-how-currentthreadsche # dulerschedulerequired-behaves?forum=rx current_thread_scheduler = CurrentThreadScheduler.singleton() if current_thread_scheduler.schedule_required(): current_thread_scheduler.schedule(set_disposable) else: set_disposable() # Hide the identity of the auto detach observer return Disposable(auto_detach_observer.dispose) @overload def pipe(self, __op1: Callable[[Observable[_T_out]], _A]) -> _A: ... @overload def pipe( self, __op1: Callable[[Observable[_T_out]], _A], __op2: Callable[[_A], _B], ) -> _B: ... @overload def pipe( self, __op1: Callable[[Observable[_T_out]], _A], __op2: Callable[[_A], _B], __op3: Callable[[_B], _C], ) -> _C: ... @overload def pipe( self, __op1: Callable[[Observable[_T_out]], _A], __op2: Callable[[_A], _B], __op3: Callable[[_B], _C], __op4: Callable[[_C], _D], ) -> _D: ... @overload def pipe( self, __op1: Callable[[Observable[_T_out]], _A], __op2: Callable[[_A], _B], __op3: Callable[[_B], _C], __op4: Callable[[_C], _D], __op5: Callable[[_D], _E], ) -> _E: ... @overload def pipe( self, __op1: Callable[[Observable[_T_out]], _A], __op2: Callable[[_A], _B], __op3: Callable[[_B], _C], __op4: Callable[[_C], _D], __op5: Callable[[_D], _E], __op6: Callable[[_E], _F], ) -> _F: ... @overload def pipe( self, __op1: Callable[[Observable[_T_out]], _A], __op2: Callable[[_A], _B], __op3: Callable[[_B], _C], __op4: Callable[[_C], _D], __op5: Callable[[_D], _E], __op6: Callable[[_E], _F], __op7: Callable[[_F], _G], ) -> _G: ... def pipe(self, *operators: Callable[[Any], Any]) -> Any: """Compose multiple operators left to right. Composes zero or more operators into a functional composition. The operators are composed from left to right. A composition of zero operators gives back the original source. Examples: >>> source.pipe() == source >>> source.pipe(f) == f(source) >>> source.pipe(g, f) == f(g(source)) >>> source.pipe(h, g, f) == f(g(h(source))) Args: operators: Sequence of operators. Returns: The composed observable. """ from ..pipe import pipe as pipe_ return pipe_(self, *operators) def run(self) -> Any: """Run source synchronously. Subscribes to the observable source. Then blocks and waits for the observable source to either complete or error. Returns the last value emitted, or throws exception if any error occurred. Examples: >>> result = run(source) Raises: SequenceContainsNoElementsError: if observable completes (on_completed) without any values being emitted. Exception: raises exception if any error (on_error) occurred. Returns: The last element emitted from the observable. """ from ..run import run return run(self) def __await__(self) -> Generator[Any, None, _T_out]: """Awaits the given observable. Returns: The last item of the observable sequence. """ from ..operators._tofuture import to_future_ loop = asyncio.get_event_loop() future: asyncio.Future[_T_out] = self.pipe( to_future_(scheduler=AsyncIOScheduler(loop=loop)) ) return future.__await__() def __add__(self, other: Observable[_T_out]) -> Observable[_T_out]: """Pythonic version of :func:`concat `. Example: >>> zs = xs + ys Args: other: The second observable sequence in the concatenation. Returns: Concatenated observable sequence. """ from reactivex import concat return concat(self, other) def __iadd__(self, other: Observable[_T_out]) -> "Observable[_T_out]": """Pythonic use of :func:`concat `. Example: >>> xs += ys Args: other: The second observable sequence in the concatenation. Returns: Concatenated observable sequence. """ from reactivex import concat return concat(self, other) def __getitem__(self, key: Union[slice, int]) -> Observable[_T_out]: """ Pythonic version of :func:`slice `. Slices the given observable using Python slice notation. The arguments to slice are `start`, `stop` and `step` given within brackets `[]` and separated by the colons `:`. It is basically a wrapper around the operators :func:`skip `, :func:`skip_last `, :func:`take `, :func:`take_last ` and :func:`filter `. The following diagram helps you remember how slices works with streams. Positive numbers are relative to the start of the events, while negative numbers are relative to the end (close) of the stream. .. code:: r---e---a---c---t---i---v---e---! 0 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1 0 Examples: >>> result = source[1:10] >>> result = source[1:-2] >>> result = source[1:-1:2] Args: key: Slice object Returns: Sliced observable sequence. Raises: TypeError: If key is not of type :code:`int` or :code:`slice` """ if isinstance(key, slice): start, stop, step = key.start, key.stop, key.step else: start, stop, step = key, key + 1, 1 from ..operators._slice import slice_ return slice_(start, stop, step)(self) __all__ = ["Observable"]