venv added, updated

This commit is contained in:
Norbert
2024-09-13 09:46:28 +02:00
parent 577596d9f3
commit 82af8c809a
4812 changed files with 640223 additions and 2 deletions

View File

@@ -0,0 +1,56 @@
# flake8: noqa
"""
InfluxDB OSS API Service.
The InfluxDB v2 API provides a programmatic interface for all interactions with InfluxDB. Access the InfluxDB API using the `/api/v2/` endpoint. # noqa: E501
OpenAPI spec version: 2.0.0
Generated by: https://openapi-generator.tech
"""
from __future__ import absolute_import
# import apis into api package
from influxdb_client.service.authorizations_service import AuthorizationsService
from influxdb_client.service.backup_service import BackupService
from influxdb_client.service.bucket_schemas_service import BucketSchemasService
from influxdb_client.service.buckets_service import BucketsService
from influxdb_client.service.cells_service import CellsService
from influxdb_client.service.checks_service import ChecksService
from influxdb_client.service.config_service import ConfigService
from influxdb_client.service.dbr_ps_service import DBRPsService
from influxdb_client.service.dashboards_service import DashboardsService
from influxdb_client.service.delete_service import DeleteService
from influxdb_client.service.health_service import HealthService
from influxdb_client.service.invokable_scripts_service import InvokableScriptsService
from influxdb_client.service.labels_service import LabelsService
from influxdb_client.service.legacy_authorizations_service import LegacyAuthorizationsService
from influxdb_client.service.metrics_service import MetricsService
from influxdb_client.service.notification_endpoints_service import NotificationEndpointsService
from influxdb_client.service.notification_rules_service import NotificationRulesService
from influxdb_client.service.organizations_service import OrganizationsService
from influxdb_client.service.ping_service import PingService
from influxdb_client.service.query_service import QueryService
from influxdb_client.service.ready_service import ReadyService
from influxdb_client.service.remote_connections_service import RemoteConnectionsService
from influxdb_client.service.replications_service import ReplicationsService
from influxdb_client.service.resources_service import ResourcesService
from influxdb_client.service.restore_service import RestoreService
from influxdb_client.service.routes_service import RoutesService
from influxdb_client.service.rules_service import RulesService
from influxdb_client.service.scraper_targets_service import ScraperTargetsService
from influxdb_client.service.secrets_service import SecretsService
from influxdb_client.service.setup_service import SetupService
from influxdb_client.service.signin_service import SigninService
from influxdb_client.service.signout_service import SignoutService
from influxdb_client.service.sources_service import SourcesService
from influxdb_client.service.tasks_service import TasksService
from influxdb_client.service.telegraf_plugins_service import TelegrafPluginsService
from influxdb_client.service.telegrafs_service import TelegrafsService
from influxdb_client.service.templates_service import TemplatesService
from influxdb_client.service.users_service import UsersService
from influxdb_client.service.variables_service import VariablesService
from influxdb_client.service.views_service import ViewsService
from influxdb_client.service.write_service import WriteService

View File

@@ -0,0 +1,290 @@
"""
Functions for serialize Pandas DataFrame.
Much of the code here is inspired by that in the aioinflux packet found here: https://github.com/gusutabopb/aioinflux
"""
import logging
import math
import re
from influxdb_client import WritePrecision
from influxdb_client.client.write.point import _ESCAPE_KEY, _ESCAPE_STRING, _ESCAPE_MEASUREMENT, DEFAULT_WRITE_PRECISION
logger = logging.getLogger('influxdb_client.client.write.dataframe_serializer')
def _itertuples(data_frame):
cols = [data_frame.iloc[:, k] for k in range(len(data_frame.columns))]
return zip(data_frame.index, *cols)
class DataframeSerializer:
"""Serialize DataFrame into LineProtocols."""
def __init__(self, data_frame, point_settings, precision=DEFAULT_WRITE_PRECISION, chunk_size: int = None,
**kwargs) -> None:
"""
Init serializer.
:param data_frame: Pandas DataFrame to serialize
:param point_settings: Default Tags
:param precision: The precision for the unix timestamps within the body line-protocol.
:param chunk_size: The size of chunk for serializing into chunks.
:key data_frame_measurement_name: name of measurement for writing Pandas DataFrame
:key data_frame_tag_columns: list of DataFrame columns which are tags, rest columns will be fields
:key data_frame_timestamp_column: name of DataFrame column which contains a timestamp. The column can be defined as a :class:`~str` value
formatted as `2018-10-26`, `2018-10-26 12:00`, `2018-10-26 12:00:00-05:00`
or other formats and types supported by `pandas.to_datetime <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime>`_ - ``DataFrame``
:key data_frame_timestamp_timezone: name of the timezone which is used for timestamp column - ``DataFrame``
""" # noqa: E501
# This function is hard to understand but for good reason:
# the approach used here is considerably more efficient
# than the alternatives.
#
# We build up a Python expression that efficiently converts a data point
# tuple into line-protocol entry, and then evaluate the expression
# as a lambda so that we can call it. This avoids the overhead of
# invoking a function on every data value - we only have one function
# call per row instead. The expression consists of exactly
# one f-string, so we build up the parts of it as segments
# that are concatenated together to make the full f-string inside
# the lambda.
#
# Things are made a little more complex because fields and tags with NaN
# values and empty tags are omitted from the generated line-protocol
# output.
#
# As an example, say we have a data frame with two value columns:
# a float
# b int
#
# This will generate a lambda expression to be evaluated that looks like
# this:
#
# lambda p: f"""{measurement_name} {keys[0]}={p[1]},{keys[1]}={p[2]}i {p[0].value}"""
#
# This lambda is then executed for each row p.
#
# When NaNs are present, the expression looks like this (split
# across two lines to satisfy the code-style checker)
#
# lambda p: f"""{measurement_name} {"" if pd.isna(p[1])
# else f"{keys[0]}={p[1]}"},{keys[1]}={p[2]}i {p[0].value}"""
#
# When there's a NaN value in column a, we'll end up with a comma at the start of the
# fields, so we run a regexp substitution after generating the line-protocol entries
# to remove this.
#
# We're careful to run these potentially costly extra steps only when NaN values actually
# exist in the data.
from ...extras import pd, np
if not isinstance(data_frame, pd.DataFrame):
raise TypeError('Must be DataFrame, but type was: {0}.'
.format(type(data_frame)))
data_frame_measurement_name = kwargs.get('data_frame_measurement_name')
if data_frame_measurement_name is None:
raise TypeError('"data_frame_measurement_name" is a Required Argument')
timestamp_column = kwargs.get('data_frame_timestamp_column', None)
timestamp_timezone = kwargs.get('data_frame_timestamp_timezone', None)
data_frame = data_frame.copy(deep=False)
data_frame_timestamp = data_frame.index if timestamp_column is None else data_frame[timestamp_column]
if isinstance(data_frame_timestamp, pd.PeriodIndex):
data_frame_timestamp = data_frame_timestamp.to_timestamp()
else:
# TODO: this is almost certainly not what you want
# when the index is the default RangeIndex.
# Instead, it would probably be better to leave
# out the timestamp unless a time column is explicitly
# enabled.
data_frame_timestamp = pd.to_datetime(data_frame_timestamp, unit=precision)
if timestamp_timezone:
if isinstance(data_frame_timestamp, pd.DatetimeIndex):
data_frame_timestamp = data_frame_timestamp.tz_localize(timestamp_timezone)
else:
data_frame_timestamp = data_frame_timestamp.dt.tz_localize(timestamp_timezone)
if hasattr(data_frame_timestamp, 'tzinfo') and data_frame_timestamp.tzinfo is None:
data_frame_timestamp = data_frame_timestamp.tz_localize('UTC')
if timestamp_column is None:
data_frame.index = data_frame_timestamp
else:
data_frame[timestamp_column] = data_frame_timestamp
data_frame_tag_columns = kwargs.get('data_frame_tag_columns')
data_frame_tag_columns = set(data_frame_tag_columns or [])
# keys holds a list of string keys.
keys = []
# tags holds a list of tag f-string segments ordered alphabetically by tag key.
tags = []
# fields holds a list of field f-string segments ordered alphebetically by field key
fields = []
# field_indexes holds the index into each row of all the fields.
field_indexes = []
if point_settings.defaultTags:
for key, value in point_settings.defaultTags.items():
# Avoid overwriting existing data if there's a column
# that already exists with the default tag's name.
# Note: when a new column is added, the old DataFrame
# that we've made a shallow copy of is unaffected.
# TODO: when there are NaN or empty values in
# the column, we could make a deep copy of the
# data and fill in those values with the default tag value.
if key not in data_frame.columns:
data_frame[key] = value
data_frame_tag_columns.add(key)
# Get a list of all the columns sorted by field/tag key.
# We want to iterate through the columns in sorted order
# so that we know when we're on the first field so we
# can know whether a comma is needed for that
# field.
columns = sorted(enumerate(data_frame.dtypes.items()), key=lambda col: col[1][0])
# null_columns has a bool value for each column holding
# whether that column contains any null (NaN or None) values.
null_columns = data_frame.isnull().any()
timestamp_index = 0
# Iterate through the columns building up the expression for each column.
for index, (key, value) in columns:
key = str(key)
key_format = f'{{keys[{len(keys)}]}}'
keys.append(key.translate(_ESCAPE_KEY))
# The field index is one more than the column index because the
# time index is at column zero in the finally zipped-together
# result columns.
field_index = index + 1
val_format = f'p[{field_index}]'
if key in data_frame_tag_columns:
# This column is a tag column.
if null_columns.iloc[index]:
key_value = f"""{{
'' if {val_format} == '' or pd.isna({val_format}) else
f',{key_format}={{str({val_format}).translate(_ESCAPE_STRING)}}'
}}"""
else:
key_value = f',{key_format}={{str({val_format}).translate(_ESCAPE_KEY)}}'
tags.append(key_value)
continue
elif timestamp_column is not None and key in timestamp_column:
timestamp_index = field_index
continue
# This column is a field column.
# Note: no comma separator is needed for the first field.
# It's important to omit it because when the first
# field column has no nulls, we don't run the comma-removal
# regexp substitution step.
sep = '' if len(field_indexes) == 0 else ','
if issubclass(value.type, np.integer) or issubclass(value.type, np.floating) or issubclass(value.type, np.bool_): # noqa: E501
suffix = 'i' if issubclass(value.type, np.integer) else ''
if null_columns.iloc[index]:
field_value = f"""{{"" if pd.isna({val_format}) else f"{sep}{key_format}={{{val_format}}}{suffix}"}}""" # noqa: E501
else:
field_value = f"{sep}{key_format}={{{val_format}}}{suffix}"
else:
if null_columns.iloc[index]:
field_value = f"""{{
'' if pd.isna({val_format}) else
f'{sep}{key_format}="{{str({val_format}).translate(_ESCAPE_STRING)}}"'
}}"""
else:
field_value = f'''{sep}{key_format}="{{str({val_format}).translate(_ESCAPE_STRING)}}"'''
field_indexes.append(field_index)
fields.append(field_value)
measurement_name = str(data_frame_measurement_name).translate(_ESCAPE_MEASUREMENT)
tags = ''.join(tags)
fields = ''.join(fields)
timestamp = '{p[%s].value}' % timestamp_index
if precision == WritePrecision.US:
timestamp = '{int(p[%s].value / 1e3)}' % timestamp_index
elif precision == WritePrecision.MS:
timestamp = '{int(p[%s].value / 1e6)}' % timestamp_index
elif precision == WritePrecision.S:
timestamp = '{int(p[%s].value / 1e9)}' % timestamp_index
f = eval(f'lambda p: f"""{{measurement_name}}{tags} {fields} {timestamp}"""', {
'measurement_name': measurement_name,
'_ESCAPE_KEY': _ESCAPE_KEY,
'_ESCAPE_STRING': _ESCAPE_STRING,
'keys': keys,
'pd': pd,
})
for k, v in dict(data_frame.dtypes).items():
if k in data_frame_tag_columns:
data_frame = data_frame.replace({k: ''}, np.nan)
def _any_not_nan(p, indexes):
return any(map(lambda x: not pd.isna(p[x]), indexes))
self.data_frame = data_frame
self.f = f
self.field_indexes = field_indexes
self.first_field_maybe_null = null_columns.iloc[field_indexes[0] - 1]
self._any_not_nan = _any_not_nan
#
# prepare chunks
#
if chunk_size is not None:
self.number_of_chunks = int(math.ceil(len(data_frame) / float(chunk_size)))
self.chunk_size = chunk_size
else:
self.number_of_chunks = None
def serialize(self, chunk_idx: int = None):
"""
Serialize chunk into LineProtocols.
:param chunk_idx: The index of chunk to serialize. If `None` then serialize whole dataframe.
"""
if chunk_idx is None:
chunk = self.data_frame
else:
logger.debug("Serialize chunk %s/%s ...", chunk_idx + 1, self.number_of_chunks)
chunk = self.data_frame[chunk_idx * self.chunk_size:(chunk_idx + 1) * self.chunk_size]
if self.first_field_maybe_null:
# When the first field is null (None/NaN), we'll have
# a spurious leading comma which needs to be removed.
lp = (re.sub('^(( |[^ ])* ),([a-zA-Z0-9])(.*)', '\\1\\3\\4', self.f(p))
for p in filter(lambda x: self._any_not_nan(x, self.field_indexes), _itertuples(chunk)))
return list(lp)
else:
return list(map(self.f, _itertuples(chunk)))
def number_of_chunks(self):
"""
Return the number of chunks.
:return: number of chunks or None if chunk_size is not specified.
"""
return self.number_of_chunks
def data_frame_to_list_of_points(data_frame, point_settings, precision=DEFAULT_WRITE_PRECISION, **kwargs):
"""
Serialize DataFrame into LineProtocols.
:param data_frame: Pandas DataFrame to serialize
:param point_settings: Default Tags
:param precision: The precision for the unix timestamps within the body line-protocol.
:key data_frame_measurement_name: name of measurement for writing Pandas DataFrame
:key data_frame_tag_columns: list of DataFrame columns which are tags, rest columns will be fields
:key data_frame_timestamp_column: name of DataFrame column which contains a timestamp. The column can be defined as a :class:`~str` value
formatted as `2018-10-26`, `2018-10-26 12:00`, `2018-10-26 12:00:00-05:00`
or other formats and types supported by `pandas.to_datetime <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html#pandas.to_datetime>`_ - ``DataFrame``
:key data_frame_timestamp_timezone: name of the timezone which is used for timestamp column - ``DataFrame``
""" # noqa: E501
return DataframeSerializer(data_frame, point_settings, precision, **kwargs).serialize()

View File

@@ -0,0 +1,371 @@
"""Point data structure to represent LineProtocol."""
import math
import warnings
from builtins import int
from datetime import datetime, timedelta, timezone
from decimal import Decimal
from numbers import Integral
from influxdb_client.client.util.date_utils import get_date_helper
from influxdb_client.domain.write_precision import WritePrecision
EPOCH = datetime.fromtimestamp(0, tz=timezone.utc)
DEFAULT_WRITE_PRECISION = WritePrecision.NS
_ESCAPE_MEASUREMENT = str.maketrans({
',': r'\,',
' ': r'\ ',
'\n': r'\n',
'\t': r'\t',
'\r': r'\r',
})
_ESCAPE_KEY = str.maketrans({
',': r'\,',
'=': r'\=',
' ': r'\ ',
'\n': r'\n',
'\t': r'\t',
'\r': r'\r',
})
_ESCAPE_STRING = str.maketrans({
'"': r'\"',
'\\': r'\\',
})
try:
import numpy as np
_HAS_NUMPY = True
except ModuleNotFoundError:
_HAS_NUMPY = False
class Point(object):
"""
Point defines the values that will be written to the database.
Ref: https://docs.influxdata.com/influxdb/latest/reference/key-concepts/data-elements/#point
"""
@staticmethod
def measurement(measurement):
"""Create a new Point with specified measurement name."""
p = Point(measurement)
return p
@staticmethod
def from_dict(dictionary: dict, write_precision: WritePrecision = DEFAULT_WRITE_PRECISION, **kwargs):
"""
Initialize point from 'dict' structure.
The expected dict structure is:
- measurement
- tags
- fields
- time
Example:
.. code-block:: python
# Use default dictionary structure
dict_structure = {
"measurement": "h2o_feet",
"tags": {"location": "coyote_creek"},
"fields": {"water_level": 1.0},
"time": 1
}
point = Point.from_dict(dict_structure, WritePrecision.NS)
Example:
.. code-block:: python
# Use custom dictionary structure
dictionary = {
"name": "sensor_pt859",
"location": "warehouse_125",
"version": "2021.06.05.5874",
"pressure": 125,
"temperature": 10,
"created": 1632208639,
}
point = Point.from_dict(dictionary,
write_precision=WritePrecision.S,
record_measurement_key="name",
record_time_key="created",
record_tag_keys=["location", "version"],
record_field_keys=["pressure", "temperature"])
Int Types:
The following example shows how to configure the types of integers fields.
It is useful when you want to serialize integers always as ``float`` to avoid ``field type conflict``
or use ``unsigned 64-bit integer`` as the type for serialization.
.. code-block:: python
# Use custom dictionary structure
dict_structure = {
"measurement": "h2o_feet",
"tags": {"location": "coyote_creek"},
"fields": {
"water_level": 1.0,
"some_counter": 108913123234
},
"time": 1
}
point = Point.from_dict(dict_structure, field_types={"some_counter": "uint"})
:param dictionary: dictionary for serialize into data Point
:param write_precision: sets the precision for the supplied time values
:key record_measurement_key: key of dictionary with specified measurement
:key record_measurement_name: static measurement name for data Point
:key record_time_key: key of dictionary with specified timestamp
:key record_tag_keys: list of dictionary keys to use as a tag
:key record_field_keys: list of dictionary keys to use as a field
:key field_types: optional dictionary to specify types of serialized fields. Currently, is supported customization for integer types.
Possible integers types:
- ``int`` - serialize integers as "**Signed 64-bit integers**" - ``9223372036854775807i`` (default behaviour)
- ``uint`` - serialize integers as "**Unsigned 64-bit integers**" - ``9223372036854775807u``
- ``float`` - serialize integers as "**IEEE-754 64-bit floating-point numbers**". Useful for unify number types in your pipeline to avoid field type conflict - ``9223372036854775807``
The ``field_types`` can be also specified as part of incoming dictionary. For more info see an example above.
:return: new data point
""" # noqa: E501
measurement_ = kwargs.get('record_measurement_name', None)
if measurement_ is None:
measurement_ = dictionary[kwargs.get('record_measurement_key', 'measurement')]
point = Point(measurement_)
record_tag_keys = kwargs.get('record_tag_keys', None)
if record_tag_keys is not None:
for tag_key in record_tag_keys:
if tag_key in dictionary:
point.tag(tag_key, dictionary[tag_key])
elif 'tags' in dictionary:
for tag_key, tag_value in dictionary['tags'].items():
point.tag(tag_key, tag_value)
record_field_keys = kwargs.get('record_field_keys', None)
if record_field_keys is not None:
for field_key in record_field_keys:
if field_key in dictionary:
point.field(field_key, dictionary[field_key])
else:
for field_key, field_value in dictionary['fields'].items():
point.field(field_key, field_value)
record_time_key = kwargs.get('record_time_key', 'time')
if record_time_key in dictionary:
point.time(dictionary[record_time_key], write_precision=write_precision)
_field_types = kwargs.get('field_types', {})
if 'field_types' in dictionary:
_field_types = dictionary['field_types']
# Map API fields types to Line Protocol types postfix:
# - int: 'i'
# - uint: 'u'
# - float: ''
point._field_types = dict(map(
lambda item: (item[0], 'i' if item[1] == 'int' else 'u' if item[1] == 'uint' else ''),
_field_types.items()
))
return point
def __init__(self, measurement_name):
"""Initialize defaults."""
self._tags = {}
self._fields = {}
self._name = measurement_name
self._time = None
self._write_precision = DEFAULT_WRITE_PRECISION
self._field_types = {}
def time(self, time, write_precision=DEFAULT_WRITE_PRECISION):
"""
Specify timestamp for DataPoint with declared precision.
If time doesn't have specified timezone we assume that timezone is UTC.
Examples::
Point.measurement("h2o").field("val", 1).time("2009-11-10T23:00:00.123456Z")
Point.measurement("h2o").field("val", 1).time(1257894000123456000)
Point.measurement("h2o").field("val", 1).time(datetime(2009, 11, 10, 23, 0, 0, 123456))
Point.measurement("h2o").field("val", 1).time(1257894000123456000, write_precision=WritePrecision.NS)
:param time: the timestamp for your data
:param write_precision: sets the precision for the supplied time values
:return: this point
"""
self._write_precision = write_precision
self._time = time
return self
def tag(self, key, value):
"""Add tag with key and value."""
self._tags[key] = value
return self
def field(self, field, value):
"""Add field with key and value."""
self._fields[field] = value
return self
def to_line_protocol(self, precision=None):
"""
Create LineProtocol.
:param precision: required precision of LineProtocol. If it's not set then use the precision from ``Point``.
"""
_measurement = _escape_key(self._name, _ESCAPE_MEASUREMENT)
if _measurement.startswith("#"):
message = f"""The measurement name '{_measurement}' start with '#'.
The output Line protocol will be interpret as a comment by InfluxDB. For more info see:
- https://docs.influxdata.com/influxdb/latest/reference/syntax/line-protocol/#comments
"""
warnings.warn(message, SyntaxWarning)
_tags = _append_tags(self._tags)
_fields = _append_fields(self._fields, self._field_types)
if not _fields:
return ""
_time = _append_time(self._time, self._write_precision if precision is None else precision)
return f"{_measurement}{_tags}{_fields}{_time}"
@property
def write_precision(self):
"""Get precision."""
return self._write_precision
@classmethod
def set_str_rep(cls, rep_function):
"""Set the string representation for all Points."""
cls.__str___rep = rep_function
def __str__(self):
"""Create string representation of this Point."""
return self.to_line_protocol()
def __eq__(self, other):
"""Return true iff other is equal to self."""
if not isinstance(other, Point):
return False
# assume points are equal iff their instance fields are equal
return (self._tags == other._tags and
self._fields == other._fields and
self._name == other._name and
self._time == other._time and
self._write_precision == other._write_precision and
self._field_types == other._field_types)
def _append_tags(tags):
_return = []
for tag_key, tag_value in sorted(tags.items()):
if tag_value is None:
continue
tag = _escape_key(tag_key)
value = _escape_tag_value(tag_value)
if tag != '' and value != '':
_return.append(f'{tag}={value}')
return f"{',' if _return else ''}{','.join(_return)} "
def _append_fields(fields, field_types):
_return = []
for field, value in sorted(fields.items()):
if value is None:
continue
if isinstance(value, float) or isinstance(value, Decimal) or _np_is_subtype(value, 'float'):
if not math.isfinite(value):
continue
s = str(value)
# It's common to represent whole numbers as floats
# and the trailing ".0" that Python produces is unnecessary
# in line-protocol, inconsistent with other line-protocol encoders,
# and takes more space than needed, so trim it off.
if s.endswith('.0'):
s = s[:-2]
_return.append(f'{_escape_key(field)}={s}')
elif (isinstance(value, int) or _np_is_subtype(value, 'int')) and not isinstance(value, bool):
_type = field_types.get(field, "i")
_return.append(f'{_escape_key(field)}={str(value)}{_type}')
elif isinstance(value, bool):
_return.append(f'{_escape_key(field)}={str(value).lower()}')
elif isinstance(value, str):
_return.append(f'{_escape_key(field)}="{_escape_string(value)}"')
else:
raise ValueError(f'Type: "{type(value)}" of field: "{field}" is not supported.')
return f"{','.join(_return)}"
def _append_time(time, write_precision) -> str:
if time is None:
return ''
return f" {int(_convert_timestamp(time, write_precision))}"
def _escape_key(tag, escape_list=None) -> str:
if escape_list is None:
escape_list = _ESCAPE_KEY
return str(tag).translate(escape_list)
def _escape_tag_value(value) -> str:
ret = _escape_key(value)
if ret.endswith('\\'):
ret += ' '
return ret
def _escape_string(value) -> str:
return str(value).translate(_ESCAPE_STRING)
def _convert_timestamp(timestamp, precision=DEFAULT_WRITE_PRECISION):
date_helper = get_date_helper()
if isinstance(timestamp, Integral):
return timestamp # assume precision is correct if timestamp is int
if isinstance(timestamp, str):
timestamp = date_helper.parse_date(timestamp)
if isinstance(timestamp, timedelta) or isinstance(timestamp, datetime):
if isinstance(timestamp, datetime):
timestamp = date_helper.to_utc(timestamp) - EPOCH
ns = date_helper.to_nanoseconds(timestamp)
if precision is None or precision == WritePrecision.NS:
return ns
elif precision == WritePrecision.US:
return ns / 1e3
elif precision == WritePrecision.MS:
return ns / 1e6
elif precision == WritePrecision.S:
return ns / 1e9
raise ValueError(timestamp)
def _np_is_subtype(value, np_type):
if not _HAS_NUMPY or not hasattr(value, 'dtype'):
return False
if np_type == 'float':
return np.issubdtype(value, np.floating)
elif np_type == 'int':
return np.issubdtype(value, np.integer)
return False

View File

@@ -0,0 +1,148 @@
"""Implementation for Retry strategy during HTTP requests."""
import logging
from datetime import datetime, timedelta
from itertools import takewhile
from random import random
from typing import Callable
from urllib3 import Retry
from urllib3.exceptions import MaxRetryError, ResponseError
from influxdb_client.client.exceptions import InfluxDBError
logger = logging.getLogger('influxdb_client.client.write.retry')
class WritesRetry(Retry):
"""
Writes retry configuration.
The next delay is computed as random value between range
`retry_interval * exponential_base^(attempts-1)` and `retry_interval * exponential_base^(attempts)
Example:
for retry_interval=5, exponential_base=2, max_retry_delay=125, total=5
retry delays are random distributed values within the ranges of
[5-10, 10-20, 20-40, 40-80, 80-125]
"""
def __init__(self, jitter_interval=0, max_retry_delay=125, exponential_base=2, max_retry_time=180, total=5,
retry_interval=5, retry_callback: Callable[[Exception], int] = None, **kw):
"""
Initialize defaults.
:param int jitter_interval: random milliseconds when retrying writes
:param num max_retry_delay: maximum delay when retrying write in seconds
:param int max_retry_time: maximum total retry timeout in seconds,
attempt after this timout throws MaxRetryError
:param int total: maximum number of retries
:param num retry_interval: initial first retry delay range in seconds
:param int exponential_base: base for the exponential retry delay,
:param Callable[[Exception], int] retry_callback: the callable ``callback`` to run after retryable
error occurred.
The callable must accept one argument:
- `Exception`: an retryable error
"""
super().__init__(**kw)
self.jitter_interval = jitter_interval
self.total = total
self.retry_interval = retry_interval
self.max_retry_delay = max_retry_delay
self.max_retry_time = max_retry_time
self.exponential_base = exponential_base
self.retry_timeout = datetime.now() + timedelta(seconds=max_retry_time)
self.retry_callback = retry_callback
def new(self, **kw):
"""Initialize defaults."""
if 'jitter_interval' not in kw:
kw['jitter_interval'] = self.jitter_interval
if 'retry_interval' not in kw:
kw['retry_interval'] = self.retry_interval
if 'max_retry_delay' not in kw:
kw['max_retry_delay'] = self.max_retry_delay
if 'max_retry_time' not in kw:
kw['max_retry_time'] = self.max_retry_time
if 'exponential_base' not in kw:
kw['exponential_base'] = self.exponential_base
if 'retry_callback' not in kw:
kw['retry_callback'] = self.retry_callback
new = super().new(**kw)
new.retry_timeout = self.retry_timeout
return new
def is_retry(self, method, status_code, has_retry_after=False):
"""is_retry doesn't require retry_after header. If there is not Retry-After we will use backoff."""
if not self._is_method_retryable(method):
return False
return self.total and (status_code >= 429)
def get_backoff_time(self):
"""Variant of exponential backoff with initial and max delay and a random jitter delay."""
# We want to consider only the last consecutive errors sequence (Ignore redirects).
consecutive_errors_len = len(
list(
takewhile(lambda x: x.redirect_location is None, reversed(self.history))
)
)
# First fail doesn't increase backoff
consecutive_errors_len -= 1
if consecutive_errors_len < 0:
return 0
range_start = self.retry_interval
range_stop = self.retry_interval * self.exponential_base
i = 1
while i <= consecutive_errors_len:
i += 1
range_start = range_stop
range_stop = range_stop * self.exponential_base
if range_stop > self.max_retry_delay:
break
if range_stop > self.max_retry_delay:
range_stop = self.max_retry_delay
return range_start + (range_stop - range_start) * self._random()
def get_retry_after(self, response):
"""Get the value of Retry-After header and append random jitter delay."""
retry_after = super().get_retry_after(response)
if retry_after:
retry_after += self._jitter_delay()
return retry_after
def increment(self, method=None, url=None, response=None, error=None, _pool=None, _stacktrace=None):
"""Return a new Retry object with incremented retry counters."""
if self.retry_timeout < datetime.now():
raise MaxRetryError(_pool, url, error or ResponseError("max_retry_time exceeded"))
new_retry = super().increment(method, url, response, error, _pool, _stacktrace)
if response is not None:
parsed_error = InfluxDBError(response=response)
elif error is not None:
parsed_error = error
else:
parsed_error = f"Failed request to: {url}"
message = f"The retriable error occurred during request. Reason: '{parsed_error}'."
if isinstance(parsed_error, InfluxDBError):
message += f" Retry in {parsed_error.retry_after}s."
if self.retry_callback:
self.retry_callback(parsed_error)
logger.warning(message)
return new_retry
def _jitter_delay(self):
return self.jitter_interval * random()
def _random(self):
return random()